Kedua bangun di atas, ABCD dan KLMN adalah dua bangun yang sebangun, karena memiliki sifat-sifat sebagai berikut :
2. Dua segi tiga yang sebangun
Segitiga ABC dan PQR adalah sebangun, karena memiliki sifat :
a. Perbandingan sisi yang sama besar bersesuaian sama besar, yaitu :
Jadi,
Perhatikan segitiga berikut !
Pada segitiga siku-siku dapat dibuat garis tinggi ke sisi miring, maka diperoleh rumus :
AB2 = BD x BC
AC2 = CD x CB
AD2 = BD x CD
Kongruenan Bangun
1. Dua bangun datar yang kongruen
Perhatikan dua bangun datar berikut !
KL = PQ
LM = QR
MN = RS
NK = SP
KLMN dan PQRS kongruen. Dua bangun dikatakan kongruen jika kedua bangun tersebut memiliki bentuk dan ukuran yang sama.
2. Dua segitiga yang kongruen
Secara geometris dua segitiga konsruen adalah dua segitiga yang saling menutpi dengan tepat. Sifat dua segitiga kongruen :
a. Pasangan sisi-sisi yang bersesuaian sama panjang.
b. Sudut yang bersesuaian sama besar.
Syarat dua segitiga kongruen adalah sebagai berikut :
Tiga sisi yang bersesuaian sama besar (sisi, sisi, sisi)
AB = PQ (sisi)
AC = PR (sisi)
BC = QR (sisi)
Dua sisi dan satu sudut apit yang bersesuaian sama besar (sisi, sudut, sisi)
AB = PQ (sisi)
BC = QR (sisi)
c. Satu sisi api dan dua sudut bersesuaian sama besar (sudut, sisi, sudut)
AC = RP (sisi)
Soal No. 1
Diberikan dua buah persegipanjang ABCD dan persegipanjang PQRS seperti gambar berikut.
Kedua persegipanjang tersebut adalah sebangun. Tentukan:
a) panjang PQ
b) luas dan keliling persegipanjang PQRS
Kedua persegipanjang tersebut adalah sebangun. Tentukan:
a) panjang PQ
b) luas dan keliling persegipanjang PQRS
Pembahasan
a) Perbandingan panjang garis AB dengan AD bersesuaian dengan perbandingan panjang garis PQ dengan PS. Sehingga
a) Perbandingan panjang garis AB dengan AD bersesuaian dengan perbandingan panjang garis PQ dengan PS. Sehingga
Panjang PQ = 24 cm
b) Luas persegipanjang PQRS = PQ x PS = 24 cm x 6 cm = 144 cm2
Keliling persegipanjang PQRS = 2 x (PQ + PS) = 2 x (24 cm + 6 cm) = 60 cm
Soal No. 2
Perhatikan gambar berikut!
Tentukan panjang DB!
Pembahasan
Soal ini tentang kesebangunan segitiga. Segitiga ABC yang lebih besar sebangun dengan segitiga kecil ADE sehingga perbandingan panjang sisi-sisi yang bersesuaian akan sama. Temukan dulu panjang sisi AB, ambil perbandingan alas dan tinggi dari kedua segitiga seperti berikut ini:
Dengan demikian DB = AB − AD = 15 cm − 10 cm = 5 cm
Soal No. 3
Dari soal berikut, tentukan:
a) QR
b) QU
Pembahasan
a) Penyelesaian seperti nomor 2, ambil perbandingan sisi-sisi yang bersesuaian dari segitiga PQR dan segitiga SUR.
b) QU = QR − UR = 20 cm − 15 cm = 5 cm
Soal No. 4
Perhatikan gambar berikut!
Tentukan panjang DE
Pembahasan
Kesebangunan dua segitiga siku-siku
Soal No. 5
Dari soal berikut tentukan panjang DE!
Pembahasan
Bedakan pengambilan sisi-sisi yang bersesuaian dari soal nomor sebelumnya.
Soal No. 6
Diketahui panjang SR adalah 8 cm.
Tentukan panjang QS!
Pembahasan
Kongruensi dua segitiga siku-siku, tentukan lebih dahulu panjang PS gunakan teorema phytagoras akan didapat angka 6 cm untuk panjang PS. Kemudian lakukan perbandingan sisi yang sesuai:
Soal No. 7
Dari soal berikut ini tentukan panjang EF!
Pembahasan
Buat satu garis yang sejajar dengan garis AD namakan CH seperti gambar berikut.
Terlihat muncul data-data baru yaitu EG = 15 cm, AH = 15 cm dan HB = 13 cm. Ambil dua segitiga sebangun GFC dan HBC bandingkan sisi-sisi yang bersesuaian:
Dengan demikian panjang EF = EG + GF = 15 + 4 = 19 cm
Soal No. 8
Perhatikan gambar berikut ini.
Tentukan panjang EF, jika titik E dan titik F berturut-turut adalah titik tengah diagonal DB dan diagonal CA!
Pembahasan
Perhatikan garis DB yang dibagi menjadi segmen-segmen DE, EG dan GB.
Misalkan
panjang DB adalah 2a
maka
DE = a
EB = a
Dari kesebangunan segitiga DGC dan segitiga AGB didapatkan perbandingan panjang garis
DG : GB = 2 : 1 didapatnya dari 24 cm : 12 cm
Sehingga
Dari pembagian segmen garis DB terlihat bahwa
DG = DE + GE
Sehingga
Akhirnya bandingkan sisi-sisi yang bersesuaian pada segitiga kongruen ABG dan EGF.
Soal No. 9
Perhatikan gambar berikut ini!
Jarak titik E ke B adalah....
A. 1,5
B. 6
C. 8
D. 10
Pembahasan
Misalkan EB dinamakan x, maka AB nantinya akan sama dengan (2 + x). Perbandingan sisi EB dengan ED pada segitiga kecil (segitiga BDE), harus sama dengan perbandingan AB dengan AC pada segitiga besar (segitiga BCA). Selanjutnya:
Jadi panjang EB adalah 6 cm.
Soal No. 10
Perhatikan gambar berikut ini!
Panjang TQ adalah...
A. 4
B. 5
C. 6
D. 7
(UN 2007)
Pembahasan
Dengan cara yang sama dengan nomor 9 diperoleh:
Soal No. 11
Sebuah karton berukuran tinggi 30 cm dan lebar 20 cm. Budi menempelkan sebuah foto sehingga sisa karton di sebelah kiri, kanan, atas foto adalah 2 cm.
Perhatikan gambar berikut ini!
Jarak titik E ke B adalah....
A. 1,5
B. 6
C. 8
D. 10
Pembahasan
Misalkan EB dinamakan x, maka AB nantinya akan sama dengan (2 + x). Perbandingan sisi EB dengan ED pada segitiga kecil (segitiga BDE), harus sama dengan perbandingan AB dengan AC pada segitiga besar (segitiga BCA). Selanjutnya:
Jadi panjang EB adalah 6 cm.
Soal No. 10
Perhatikan gambar berikut ini!
Panjang TQ adalah...
A. 4
B. 5
C. 6
D. 7
(UN 2007)
Pembahasan
Dengan cara yang sama dengan nomor 9 diperoleh:
Soal No. 11
Sebuah karton berukuran tinggi 30 cm dan lebar 20 cm. Budi menempelkan sebuah foto sehingga sisa karton di sebelah kiri, kanan, atas foto adalah 2 cm.
Jika foto dan karton sebangun, sisa karton di bawah foto adalah...
A. 5 cm
B. 4 cm
C. 3 cm
D. 2 cm
(Modifikasi Soal Kesebangunan - UN 2010)
Pembahasan
Perhatikan ilustrasi foto dan karton tempat menempel berikut, misalkan sisa panjang karton namakan sebagai x.
Perbandingan panjang dengan lebar foto harus sama dengan perbandingan panjang dengan lebar dari karton, karena sebangun.
Soal No. 12
Sebuah foto berukuran tinggi 30 cm dan lebar 20 cm ditempel pada sebuah karton. Sisa karton di sebelah kiri, kanan, atas foto 2 cm. Jika foto dan karton sebangun, sisa karton di bawah foto adalah...
A. 5 cm
B. 4 cm
C. 3 cm
D. 2 cm
(Soal Kesebangunan - Soal UN Matematika 2010)
Pembahasan
Perhatikan ilustrasi foto dan karton tempat menempel berikut,
Perbandingan panjang dengan lebar foto harus sama dengan perbandingan panjang dengan lebar dari karton, karena sebangun.
A. 5 cm
B. 4 cm
C. 3 cm
D. 2 cm
(Modifikasi Soal Kesebangunan - UN 2010)
Pembahasan
Perhatikan ilustrasi foto dan karton tempat menempel berikut, misalkan sisa panjang karton namakan sebagai x.
Perbandingan panjang dengan lebar foto harus sama dengan perbandingan panjang dengan lebar dari karton, karena sebangun.
Soal No. 12
Sebuah foto berukuran tinggi 30 cm dan lebar 20 cm ditempel pada sebuah karton. Sisa karton di sebelah kiri, kanan, atas foto 2 cm. Jika foto dan karton sebangun, sisa karton di bawah foto adalah...
A. 5 cm
B. 4 cm
C. 3 cm
D. 2 cm
(Soal Kesebangunan - Soal UN Matematika 2010)
Pembahasan
Perhatikan ilustrasi foto dan karton tempat menempel berikut,
Perbandingan panjang dengan lebar foto harus sama dengan perbandingan panjang dengan lebar dari karton, karena sebangun.
Perhatikan perbedaannya dengan nomor sebelumnya dalam menempatkan x.
Soal No. 13
Perhatikan gambar!
Panjang EF adalah...
A. 20 cm
B. 21 cm
C. 23 cm
D. 26 cm
(UN SMP 2013)
Pembahasan
Tambahaan garis bantu, beri nama BG.
Panjang DG jadi 14 cm, dan GC 21 cm karena tadinya DC = 35 cm. Bandingkan sisi segitiga besar BGC dan segitiga kecil BHF yang bersesuaian hingga diperoleh panjang HF dulu.
Soal No. 14
Perhatikan gambar di samping!
Panjang TR adalah….
A. 2 cm
B. 3 cm
C. 4 cm
D. 6 cm
(UN Matematika SMP/MTs tahun 2014)
Perhatikan gambar!
Panjang EF adalah...
A. 20 cm
B. 21 cm
C. 23 cm
D. 26 cm
(UN SMP 2013)
Pembahasan
Tambahaan garis bantu, beri nama BG.
Panjang DG jadi 14 cm, dan GC 21 cm karena tadinya DC = 35 cm. Bandingkan sisi segitiga besar BGC dan segitiga kecil BHF yang bersesuaian hingga diperoleh panjang HF dulu.
Soal No. 14
Perhatikan gambar di samping!
Panjang TR adalah….
A. 2 cm
B. 3 cm
C. 4 cm
D. 6 cm
(UN Matematika SMP/MTs tahun 2014)
Pembahasan
Dicoba dulu, petunjuknya, ΔPQR sebangun dengan ΔPTS, dengan ∠T bersesuaian dengan ∠Q, dan ∠S bersesuaian dengan ∠R. Sementara ∠P sama-sama dipakai kedua segitiga. Bandingkan sisi-sisi yang diketahui dan bersesuaian, biar lebih mudah diliat bisa digambar dulu kedua segitiga secara terpisah.
Dicoba dulu, petunjuknya, ΔPQR sebangun dengan ΔPTS, dengan ∠T bersesuaian dengan ∠Q, dan ∠S bersesuaian dengan ∠R. Sementara ∠P sama-sama dipakai kedua segitiga. Bandingkan sisi-sisi yang diketahui dan bersesuaian, biar lebih mudah diliat bisa digambar dulu kedua segitiga secara terpisah.
Read more: http://matematikastudycenter.com/smp/56-9-smp-soal-pembahasan-kesebangunan-dan-kongruensi#ixzz3EUQACe31
Bayar Pakai Dengan Pulsa AXIS XL TELKOMSEL
ReplyDeleteAnda Dapat Bermain Setiap Hari dan Selalu Menang Bersama Poker Vita
Capsa Susun, Bandar Poker,QQ Online, Adu Q, dan Bandar Q
Situs Situs Tersedia bebebagai jenis Permainan games online lain
Sabung Ayam S1288, CF88, SV388, Sportsbook, Casino Online,
Togel Online, Bola Tangkas Slots Games, Tembak Ikan, Casino
Terima semua BANK Nasional dan Daerah, OVO GOPAY
Whatsapp : 0812-222-2996
POKERVITA
Latihan Dasar Ayam Menjadi Petarung Berkualitas
ReplyDeleteAlasan Ayam Putih Thailand Sangat Menakutkan